
Topology Chapter 3 Lecture Notes Fall 2023

§26Compact Spaces

Definition Let X be a set topological space and let F = {U | U ⊆ X} be a collection of subsets

of X. Then F is called a cover of X if
⋃
U∈F

U = X.

• F is called an open cover of X if every U ∈ F is an open subset of X, and
⋃
U∈F

U = X.

• F ′ is called a subcover of F if F ′ ⊆ F , and
⋃

U∈F ′

U = X.

• F ′ is called a finite subcover of F if F ′ is a subcover of F , and F ′ contains finite number of
elements of F .

Definition A space X is said to be compact if every open covering F = {U | U ⊆ X} of X has
a finite subcover F ′ = {Ui ∈ F | 1 ≤ i ≤ n}.
Example 1. The real line R is not compact, for the covering of R by open intervals

F = {(n, n+ 2) | n ∈ Z}

contains no finite subcollection that covers R.
Example 2. The following subspace of R is compact:

X = {0} ∪ {1/n | n ∈ Z+}.

Given an open covering F of X, there is an element U of F containing 0. The set U contains
all but finitely many of the points 1/n; choose, for each point of X not in U, an element of F
containing it. The collection consisting of these elements of F , along with the element U, is a
finite subcollection of F that covers X.

Example 3. Any space X containing only finitely many points is necessarily compact, because
in this case every open covering of X is finite.

Example 4. The interval (0, 1] is not compact; the open covering

F = {(1/n, 1] | n ∈ Z+}

contains no finite subcollection covering (0, 1]. Nor is the interval (0, 1) compact; the same
argument applies. On the other hand, the interval [0, 1] is compact; you are probably already
familiar with this fact from analysis. In any case, we shall prove it shortly.

In general, it takes some effort to decide whether a given space is compact or not. First we shall
prove some general theorems that show us how to construct new compact spaces out of existing
ones. Then in the next section we shall show certain specific spaces are compact. These spaces
include all closed intervals in the real line, and all closed and bounded subsets of Rn.

Let us first prove some facts about subspaces. If Y is a subspace of X, a collection F of subsets
of X is said to cover Y if the union of its elements contains Y.

Lemma 26.1 Let Y be a subspace of X. Then Y is compact if and only if every covering of Y
by sets open in X contains a finite subcollection covering Y.

Proof Suppose that Y is compact and F = {Uα | α ∈ J} is a covering of Y by sets open in X.
Then the collection

{Uα ∩ Y | α ∈ J}
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is a covering of Y by sets open in Y ; hence a finite subcollection

{Uα1 ∩ Y, . . . , Uαn ∩ Y }

covers Y. Then {Uα1 , . . . , Uαn} is a subcollection of F that covers Y.

Conversely, suppose the given condition holds; we wish to prove Y compact. Let A = {Aα | α ∈
J} be a covering of Y by sets open in Y. For each α, choose a set Uα open in X such that

Aα = Uα ∩ Y, where Uα is open in X for each α ∈ J

The collection F = {Uα | α ∈ J} is a covering of Y by sets open in X. By hypothesis, some
finite subcollection {Uα1 , . . . , Uαn} covers Y. Then {Aα1 , . . . , Aαn} is a subcollection of A that
covers Y.

Theorem 26.2 Every closed subspace of a compact space is compact, that is, if C is a closed
subset of a compact topological space X, then C is compact.

Proof Let F = {Uα | α ∈ J} be a family of open subsets of X that covers C, i.e.

C ⊆
⋃
α∈J

Uα.

Since (X \ C) ∪ F is an open cover of X and since X is compact, there exist U1, . . . , Un ∈ F
such that

C ∪ (X \ C) = X =

(
n⋃

i=1

Ui

)
∪ (X \ C) =⇒ C ⊆

n⋃
i=1

Ui

and {Ui | 1 ≤ i ≤ n} is a finite subcover of F . This shows that C is compact.

Theorem 26.3 Every compact subspace of a Hausdorff space is closed, that is, if Y is a compact
subspace of a Hausdorff space X, then Y is closed.

Proof Let x0 be a point of X \Y. For each point y of Y, since X is Hausdorff, there exist disjoint
neighborhoods Uy and Vy of the points x0 and y, respectively. Since {Vy | y ∈ Y } is an open
covering Y and Y is compact, there are finitely many of them Vy1 , . . . , Vyn cover Y. Let

V = Vy1 ∪ · · · ∪ Vyn and U = Uy1 ∩ · · · ∩ Uyn =⇒ Y ⊂ V, x0 ∈ U and U ∩ V = ∅

since if z ∈ V =⇒ z ∈ Vyi for some i, hence z /∈ Uyi =⇒ z /∈ U (see Figure 26.1). This implies
that U is an open neighborhood of x0 in X \ Y, so X \ Y is open in X and Y is closed.

y1

y2

y3

x0

Y

Uy3

Uy2

Uy1

Vy3

Vy2

Vy1

Figure 26.1
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Lemma 26.4 If C is a compact subset of a Hausdorff space X and x ∈ X \ C, then there
exist disjoint neighborhoods U and V of x and C, respectively. Therefore a compact subset of a
Hausdorff space is closed.

Proof For each z ∈ C, since X is Hausdorff, let Uz and Vz be disjoint open subsets such that
x ∈ Uz and z ∈ Vz. Since

C ⊆
⋃
z∈C

Vz,

F = {Vz | z ∈ C} is an open cover of C, and since C is compact there exist a finite subcover
{Vzi | zi ∈ C, for each 1 ≤ i ≤ n} of F such that

C ⊆
n⋃

i=1

Vzi .

Let V =
n⋃

i=1

Vzi . Since Vzi ∩ Uzi = ∅ and x ∈ Uzi for each 1 ≤ i ≤ n, the sets U =
n⋂

i=1

Uzi and V

are disjoint open neighborhoods of x and C.

Theorem 26.5 If X is a compact topological space and f : X → Y is a continuous function,
then f(X) is a compact subspace of Y.

Proof Let F = {Vα | α ∈ J} be a covering of the set f(X) by sets open in Y. Since f : X → Y
is continuous, the collection

{f−1(Vα) | α ∈ J}
is an open covering X. Hence finitely many of them, say

f−1(V1), . . . , f
−1(Vn),

cover X. Then the sets V1, . . . , Vn cover f(X).

Remark Theorem 26.5 implies that the compactness is a topological property, i.e. if X is
compact and if Y is homeomorphic to X, then Y is compact.

Theorem 26.6 If X is a compact space, Y is a Hausdorff space and f : X → Y is a bijective
continuous function, then f : X → Y is a homeomorphism.

Proof If C is a closed subset of X, since X is compact and f : X → Y is continuous, then C is
compact in X and f(C) is compact in Y. Since Y is Hausdorff and f : X → Y has a one-to-one,

onto, the set
(
f−1
)−1

(C) = f(C) is closed in Y for each closed subset C of X which implies that
f−1 : Y → X is continuous and f : X → Y is a homeomorphism.

Theorem 26.7 The product space X × Y is compact if and only if both X and Y are compact.

Proof (=⇒) If X × Y is compact, then both X and Y are compact since the projections
π1 : X × Y → X, π2 : X × Y → Y are onto and continuous functions.

(⇐=) Suppose both X and Y are compact spaces and let F be an open cover of X×Y by basic
open sets of the form U × V, where U is open in X and V is open in Y.

For each x ∈ X, consider the subset {x}×Y of X×Y with the induced topology. Since the map

π2|{x}×Y : {x} × Y → Y

is a homeomorphism and Y is compact, {x} × Y is compact and there exists a finite subfamily
{Ux

i × V x
i | 1 ≤ i ≤ nx} of F whose union contains {x} × Y. Since x ∈ Ux

i for each 1 ≤ i ≤ nx,

Ux =
nx⋂
i=1

Ux
i ̸= ∅ and Ux × Y ⊆

nx⋃
i=1

Ux
i × V x

i ,
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the union of these sets contains more than {x}, it actually contains all of Ux × Y.

X

x

Ux

Y

X × Y
Ux × Y

{x} × Y

Since the family {Ux | x ∈ X} is an open cover of X, we can select a finite subcover {Uxj | 1 ≤

j ≤ s} of X such that X =
s⋃

i=j

Uxj and

X × Y =
s⋃

j=1

(Uxj × Y ) ⊆
s⋃

j=1

nxj⋃
i=1

(
U

xj

i × V
xj

i

)
this implies that X × Y is compact since it can be covered by a finite subfamily {Uxj

i × V
xj

i |
1 ≤ j ≤ s, 1 ≤ i ≤ nxj

} of F .

Definition A collection C of subsets of X is said to have the finite intersection property if for
every finite subcollection

{C1, . . . , Cn}

of C , the intersection C1 ∩ · · · ∩ Cn is nonempty.

Theorem 26.9 LetX be a topological space. ThenX is compact if and only if for every collection
C = {Cα | α ∈ J} of closed sets in X having the finite intersection property satisfies⋂

α∈J

Cα ̸= ∅.

Proof Let C = {Cα | α ∈ J} be a collection of closed subsets in X and let F = {Uα = X \Cα |
α ∈ J} be the collection of open subsets in X. Since

• ∅ =
⋂
α∈J

Cα =
⋂
α∈J

(X \ Uα) = X \

(⋃
α∈J

Uα

)
⇐⇒

⋃
α∈J

Uα = X ⇐⇒ F is an open cover of X,

• C has the finite intersection property ⇐⇒ F does not have a finite subcover,

X is not compact if and only if there is a collection C = {Cα | α ∈ J} of closed sets in X

satisfying
⋂
α∈J

Cα = ∅ and the finite intersection property.
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A special case of this theorem occurs when we have a nested sequence C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃
Cn+1 ⊃ · · · of closed sets in a compact space X. If each of the sets Cn is nonempty, then the
collection {Cn | n ∈ Z+} automatically has the finite intersection property. Then the intersection⋂

n∈Z+

Cn ̸= ∅.

§27Compact Subspaces of the Real Line

Definition A set C ⊂ Rn is called a bounded subset of Rn if there exists a ball Br(p) = {x ∈

Rn | |x− p| < r} or a rectangular box
n∏

k=1

[ak, bk] = [a1, b1]× · · · × [an, bn] ⊂ Rn such that either

C ⊂ Br(p) or C ⊂
n∏

k=1

[ak, bk].

Theorem 27.3 (Heine-Borel Theorem) A subset X of Rn is closed and bounded if and only
if X is compact, that is, every open cover F of X (with the induced topology) has a finite
subcover.

Lemma A closed interval [a, b] of the real line R is compact.

Proof of the Lemma Suppose that the Lemma is false. Let F be an open cover of [a, b] which
does not contain a finite subcover.

� Set I1 = [a, b].

� Subdivide [a, b] into 2 closed subintervals of equal length [a, (a + b)/2] and [(a + b)/2, b].
At least one of these must have the property that it is not contained in the union of any
finite subfamily of F . Select one of [a, (a+ b)/2], [(a+ b)/2, b] which has this property and
call it I2.

� Now repeat the process, bisecting I2 and selecting one half, called I3, which is not contained
in the union of any finite subfamily of F .

� Continuing in this way, we obtain a nested sequence of closed intervals

I1 ⊇ I2 ⊇ I3 ⊇ . . . with the length of In equals |In| =
b− a

2n−1
∀n = 1, 2, . . .

� For each n ∈ N, let an be the left endpoint of In, since {an} is a nondecreasing, bounded
above sequence of real numbers, the least upper bound property of R and lim

n→∞
|In| = 0, the

sequence {an} converges and there exists a unique point

p = sup{an | n ∈ N} = lim
n→∞

an ∈ [a, b] such that
∞⋂
n=1

In = {p}.

� Since p ∈ [a, b], there is an open set O ∈ F , an ε > 0 and an n ∈ N such that p ∈ O,
(p−ε, p+ε)∩ [a, b] ⊆ O and |In| < ε. Also since an ≤ p ∈ In, In ⊆ (p−ε, p+ε)∩ [a, b] ⊆ O,
i.e. In is contained in a single element of F , which is a contradiction to the choice of In.

Lemma A closed rectangular box
n∏

k=1

[ak, bk] = [a1, b1]× · · · × [an, bn] of Rn is compact.
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Theorem 28.1 (Bolzano-Weierstrass Property) An infinite set of points in a compact space
must have a limit point, that is, if S is an infinite subset of a compact space X, then S ′∩X ̸= ∅.
Proof Let S be a subset of a compact space X that does not contain any limit point of S, i.e.

S ′ ∩X = ∅.

For each x ∈ X, since x /∈ S ′, there is an open neighborhood O(x) of x such that

O(x) ∩ S \ {x} = ∅ =⇒ O(x) ∩ S =

{
∅ if x /∈ S

{x} if x ∈ S

By the compactness of X, the open cover {O(x) | x ∈ X} has a finite subcover. But each set
O(x) contains at most one point of S and therefore S must be a finite set.

Theorem 27.4 (Extreme Value Theorem) A continuous real-valued function defined on a
compact space is bounded and attains its bounds.

Proof If f : X → R is continuous and if X is compact, then f(X) is compact. Therefore f(X)
is bounded closed subset of R by a preceding theorem and there exist x1, x2 ∈ X such that

f(x1) = sup(f(X)) and f(x2) = inf(f(X)).

Definition Let A, B be subsets of the metric space (X, d). Then the diameter of A is defined by

diam (A) = sup
x, y∈A

d(x, y)

and the distance d(A,B) between A and B is defined by

d(A,B) = inf
x∈A, y∈B

d(x, y).

Lemma 27.5 (The Lebesgue Number Lemma) Let X be a compact metric space and let
F be an open cover of X. Then there exists a real number δ > 0 (called a Lebesgue number of
F ) such that any subset of X of diameter less than δ is contained in some member of F .

Proof of the Lebesgue Number Lemma If Lebesgue’s Lemma is false, there exists a sequence
{An ̸= ∅ | n ∈ N} of subsets of X such that

� An ̸⊆ U for each U ∈ F , for each n ∈ N.
� d(An) = diam (An) ↘ 0 ( diameter of An deceases to 0).

For each n = 1, 2, . . . , choose a point xn ∈ An. Then the sequence {xn} contains

� either finitely many distinct points (in which case some point repeats infinitely times)

� or infinitely many distinct points (in which case {xn} has a limit point since X is compact).

Denote the repeated point, or limit point, by p. Then there is a subsequence {xnk
} of {xn}

converging to p. Since p ∈ X and F is an open cover of X, there is an open set U ∈ F
containing p. Choose ε > 0 such that Bε(p) ⊆ U, and choose an integer k large enough so that:

(a) d(Ank
) < ε/2 =⇒ d(xnk

, x) < ε/2 for all x ∈ Ank
, and

(b) d(xnk
, p) < ε/2 ⇐⇒ xnk

∈ Bε/2(p).
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U

p

xnk

Ank

ε/2

ε

Thus we have

d(x, p) ≤ d(x, xnk
) + d(xnk

, p) < ε for all x ∈ Ank
=⇒ Ank

⊆ Bε(p) ⊆ U.

This contradicts our initial choice of the sequence {An}.
Definition A function f from the metric space (X, dX) to the metric space (Y, dY ) is said to
be uniformly continuous if given ε > 0, there is a δ > 0 such that for every pair of points x0, x1

of X,
dX(x0, x1) < δ =⇒ dY (f(x0), f(x1)) < ε.

Theorem 27.6 (Uniform Continuity Theorem) Let f : X → Y be a continuous map of the
compact metric space (X, dX) to the metric space (Y, dY ). Then f is uniformly continuous.

Proof Given ε > 0, take the open covering {B(y, ε/2) | y ∈ Y } of Y by balls B(y, ε/2) of radius
ε/2. Let F = {f−1(B(y, ε/2)) | y ∈ Y } be the open covering of X by the inverse images of these
balls under f. Choose δ to be a Lebesgue number for the covering F . Then if x1 and x2 are two
points of X such that dX(x1, x2) < δ, the two-point set {x1, x2} has diameter less than δ, so that
its image {f(x1), f(x2)} lies in some ball B(y, ε/2). Then dY (f(x1), f(x2)) < ε., as desired.

§23Connected Spaces

Definition Let X be a topological space. A separation of X is a pair U, V of disjoint nonempty
open subsets of X whose union is X. The space X is said to be connected if there does not exist
a separation of X.

A space X is disconnected if there exists a separation U, V of X.

Lemma 23.1 Let A and B be subsets of a topological space X. Then A and B of X form a
separation of X, i.e. X is disconnected, if

A ̸= ∅, B ̸= ∅, A ∪B = X, Ā ∩B = A ∩ B̄ = ∅,

Proof If U and V form a separation of X, then A = U = X \ V and B = V = X \ U are both
closed and open subsets of X such that Ā = A = U ̸= ∅, B̄ = B = V ̸= ∅, A ∪B = U ∪ V = X,
Ā ∩B = U ∩ V = ∅ and A ∩ B̄ = U ∩ V = ∅.
Conversely, if A ̸= ∅, B ̸= ∅, A ∪ B = X, Ā ∩ B = A ∩ B̄ = ∅, since Ā, B̄ ⊆ X, we have
Ā ∪ B = A ∪ B̄ = X =⇒ A = X \ B̄ and B = X \ Ā are disjoint nonempty open (and closed)
subsets whose union is X, so A and B form a separation of X and X is disconnected.
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Remark In fact, a space X is connected if and only if the only subsets of X that are both open
and closed in X are the empty set and X itself.

Proof (=⇒) If A is a nonempty proper subset of X (i.e. A ⊊ X) which is both open and
closed in X, then U = A and V = X \ A are disjoint nonempty open subsets of X such that
U ∪ V = A ∪ (X \ A) = X, so U and V form a separation of X and X is disconnected.

(⇐=) If U and V form a separation of X, then both U = X \ V and V = X \ U are nonempty
proper open and closed subsets of X.

Remark In summary, the following are equivalent:

(a) X is connected.

(b) X and ∅ are the only subsets of X which are both open and closed.

(c) X cannot be expressed as the union of two disjoint nonempty open sets.

(d) There are no onto continuous function from X to a discrete space which contains more than
one point.

Proof

[(a) ⇐⇒ (b)] done as in the preceding Remark.

[(b) ⇐⇒ (c)] done as in the Lemma 23.1.

[(c) ⇒ (d)] Suppose (c) is satisfied, and let Y be a discrete space with more than one point and
let f : X → Y be an onto continuous function.

Break up Y as a union U∪V of two disjoint nonempty open sets. Then X =
[
f−1(U)

]
∪
[
f−1(V )

]
is the union of two disjoint nonempty open sets, contradicting (c).

[(d) ⇒ (a)] Let X be a space which satisfies (d) and suppose X is not connected. There exist
A, B ⊆ X such that

A ̸= ∅, B ̸= ∅, A ∪B = X and Ā ∩B = A ∩ B̄ = ∅.

Since Ā B̄ are closed in X, A = X \ B̄ and B = X \ Ā are also open in X. Let f be a function
from X to the subspace {−1, 1} of R defined by

f(x) =

{
−1 if x ∈ A

1 if x ∈ B.

Then f is continuous and onto, contradicting (d) for X.

Lemma 23.2 If the sets C and D form a separation of X, and if Y is a connected subspace of
X, then Y lies entirely within either C or D.

Proof Since C and D are both open in X, the sets C ∩ Y and D ∩ Y are open in Y.

These two sets are disjoint and their union is Y ; if they were both nonempty, they would con-
stitute a separation of Y. Therefore, one of them is empty. Hence Y must lie entirely in C or in
D.

Theorem 23.3 Suppose that F = {Aα} is a collection of connected subspaces of X such that⋂
α

Aα ̸= ∅. Then the space Y =
⋃
α

Aα is connected.

Proof Let p ∈
⋂
α

Aα. Suppose that Y = C ∪D is a separation of Y. The point p is in one of the

sets C or D; suppose p ∈ C.
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Since Aα is connected, it must lie entirely in either C or D, and it cannot lie in D because it
contains the point p of C. Hence Aα for every α, so that Aα ⊂ C, contradicting the fact that D
is nonempty.

Theorem 23.4 Let A be a connected subspace of X. If A ⊆ B ⊆ Ā, then B is also connected.

Said differently: If B is formed by adjoining to the connected subspace A some or all of its limit
points, then B is connected.

Proof Let A be connected and let A ⊆ B ⊆ Ā. Suppose that B = C ∪D is a separation of B.
By Lemma 23.2, the set A must lie entirely in C or in D; suppose that A ⊆ C. Then Ā ⊆ C̄;
since C̄ and D are disjoint, Ā and hence B ⊆ Ā cannot intersect D. This contradicts the fact
that D is a nonempty subset of B.

Corollary Let Z be a subset of a topological space X. If Z is connected and if Z is dense in X
(i.e. Z̄ = X), then X is connected.

Theorem 23.5 Let X be a connected space and let f : X → Y be a continuous map. Then the
image space Z = f(X) is connected.

Proof Since the map obtained from f by restricting its range to the space Z is also continuous,
it suffices to consider the case of a continuous surjective map

g : X → Z.

Suppose that A is a subset of Z which is both open and closed, then g−1(A) is both open and
closed in X. Since X is connected, g−1(A) is either X or ∅, which implies that A is Z or ∅. This
proves that Z is connected.

Corollary If h : X → Y is a homeomorphism, then X is connected if and only if Y is connected.
In brief, connectedness is a topological property of a space.

Theorem 23.6 If X and Y are connected spaces then the product space X × Y is connected

Proof Let a×b be a point in the product spaceX×Y. Given x ∈ X, since X and Y are connected
spaces, X and Y are respectively homomorphic to the “horizontal slice” X×{b} and the “vertical
slice” {x} × Y, the “T -shaped” space defined by

Tx = (X × {b}) ∪ ({x} × Y ) .

is connected for each x ∈ X. Furthermore, since a × b ∈
⋂
x∈X

Tx (see Figure 23.2),
⋃
x∈X

Tx is

connected by Theorem 23.3.

x ×  Y

a ×  b
X ×  b

X
ax

Y

b

Figure 23.2
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Remark By induction and the fact (easily proved) that X1 × · · · × Xn is homeomorphic with
(X1 × · · · ×Xn−1)×Xn, one can show that any finite Cartesian product of connected spaces is
connected.

§24Connected Subspaces of the Real Line

Corollary 24.2 The real line R is a connected space.

Proof Suppose that R is the union of disjoint nonempty open subsets A and B, that is,

A ̸= ∅, B ̸= ∅, A ∪B = R, Ā ∩B = A ∩ B̄ = ∅,

Choose points a ∈ A, b ∈ B and suppose for convenience that a < b. Let

X = {x ∈ A | x < b} = A ∩ (−∞, b).

Since X is a bounded above nonempty subset of R = A ∪ B, the least upper bound s = supX
exists, and s is in either A or B since s ∈ R = A ∪B. However,

� if s ∈ A, since b ∈ B and s = supX, we must have s ⪇ b and (s, b) ⊆ B which implies that
s ∈ B′ ⊆ B̄ and s ∈ A ∩ B̄ ̸= ∅, contrary to the assumption that A ∩ B̄ = ∅;

� if s ∈ B, since s = supX, s ∈ X ′ ⊆ A′ ⊆ Ā and s ∈ Ā∩B ̸= ∅, contrary to the assumption
that Ā ∩B = ∅.

So, s /∈ A ∪B which contradicts the fact that s ∈ R = A ∪B.

Remark If we replace the real line R by an interval I in the proof, we can show that any interval
I is connected.

Remark Let X be a nonempty subset of R. Then X is connected if and only if X is an interval.

Proof (=⇒) Suppose that X is not an interval, there exist a < b ∈ X ⊂ R and p /∈ X such that
a < p < b, A = {x ∈ X | x < p} and B = X \ A = {x ∈ X | p < x} are disjoint nonempty
subsets of X whose union is X.

Since

� A is a bounded above nonempty subset of R, the least upper bound s = supA exists, s ∈ Ā
and s ≤ p =⇒ s /∈ B =⇒ Ā ∩B = ∅,

� B is a bounded below nonempty subset of R, the greatest lower bound m = inf B exists,
b ∈ B̄ and m ≥ p =⇒ m /∈ A =⇒ A ∩ B̄ = ∅,

so A and B form a separation of X and X is disconnected.

Theorem 24.3 (Intermediate value theorem) Let f : X → R be a continuous map, where
X is a connected space and R is in the usual (order) topology. If a and b are two points of X
and if r is a point of R lying between f(a) and f(b), then there exists a point c of X such that
f(c) = r.

Proof Assume the hypotheses of the theorem. The sets

A = f(X) ∩ (−∞, r) and B = f(X) ∩ (r, ∞)

are disjoint and nonempty because f(a) ∈ A and f(b) ∈ B. Also, since (−∞, r), (r, ∞) are
open in R, the sets A = f(X) ∩ (−∞, r) and B = f(X) ∩ (r, ∞) are open subsets in f(X). If
there were no point c of X such that f(c) = r, then f(X) would be the union of the sets A and
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B. Then A and B would constitute a separation of f(X), contradicting the fact that the image
of a connected space under a continuous map is connected.

Definition Given points x and y of the topological space X, a path in X from x to y is a
continuous function γ : [a, b] → X of some closed interval in the real line into X, such that
γ(a) = x and γ(b) = y. A space X is said to be path-connected if every pair of points of X can
be joined by a path in X.

Theorem If X is a path-connected space, then X is connected.

Proof Suppose X = A ∪ B is a separation of X. Let γ : [a, b] → X be any path in X. Since
γ is continuous and [a, b] is connected, the set γ([a, b]) is connected and it lies entirely in either
A or B. Therefore, there is no path in X joining a point of A to a point of B, contrary to the
assumption that X is path connected.

Theorem If X is a connected open subset of the Euclidean space En, then X is path-connected.

Proof Given x ∈ X, let U(x) be the collection of points of X defined by

U(x) = {y ∈ X | y can be joined to x by a path in X}.

Then U(x) ̸= ∅ and U(x) is a path connected subset (component) of X.

Claim For each x ∈ X, U(x) is open in X.

Proof of Claim Let y ∈ U(x), since X is open in En, there exists a ball Br(y) such that
Br(y) ⊆ X. If z ∈ Br(y), since z can be joined to x by a path in X and U(x) is a path-connected
component of X, we must have z ∈ U(x) and Br(y) ⊆ X. This implies that U(x) is open in X.

Claim For each x ∈ X, U(x) is closed in X.

Proof of Claim Since

X \ U(x) =
⋃

y∈X\U(x)

U(y) = union of open subset U(y) of X,

X \ U(x) is open in X and thus U(x) is closed in X.

Since X is connected and U(x) ̸= ∅ is both open and closed in X, we must have U(x) = X which
implies that X is path-connected.

The converse is not true: the topologist’s sine curve is connected but not path-connected.

Example Let Z = {(x, sin(1/x)) | 0 < x ≤ 1}, Y = {0} × [−1, 1] and X = Y ∪ Z = Z̄ ⊂ R2 be
the topologist’s sine curve.

S

Figure 24.5

Since Z is path-connected, it is connected and Z̄ = X is connected.
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Suppose that X is path connected and f : [0, 1] → X is a one-to-one continuous function such
that f(0) = (0, 0) and f(1) = (1, sin 1), i.e. f : [0, 1] → X is a path beginning at (0, 0) ∈ Y and
ending at (1, sin 1) ∈ Z.

Let πx, πy : X → R be projection maps to the x– and y-coordinates respectively. Since πx ◦ f is
continuous on [0, 1] and by the intermediate value theorem,

πx ◦ f(0) = 0 < 1 = πx ◦ f(1) =⇒ (πx ◦ f)([0, 1]) = [0, 1] =⇒ Z ⊂ f([0, 1]).

For each n = 0, 1, 2, . . . , since
(
(2nπ + π/2)−1, 1

)
∈ Z ⊂ f([0, 1]) and f is one-to-one, there

exists a strictly decreasing sequence {tn} ⊂ (0, 1] such that

f(tn) = (πx ◦ f(tn), πy ◦ f(tn)) =
(
(2nπ + π/2)−1, 1

)
.

Since [0, 1] is compact, {tn} is a strictly decreasing sequence in [0, 1] and πy ◦ f is continuous on
[0, 1], there exists a t ∈ [0, 1] such that

lim
n→∞

tn = t ∈ [0, 1], and πy ◦ f(t) = lim
n→∞

πy ◦ f(tn) = 1.

Furthermore, since πy ◦ f is continuous on [0, 1] and (πy ◦ f) ([tn+1, tn]) = [−1, 1] for each n =
0, 1, 2, . . . , there exists un ∈ (tn+1, tn) such that

πy ◦ f(un) = −1, lim
n→∞

un = t, and πy ◦ f(t) = lim
n→∞

πy ◦ f(un) = −1

which is a contradiction to the continuity of πy ◦ f. Hence, there does not exist a path joining
from a point in Y to Z, i.e. the topologist’s since curve X = Z̄ is not path connected.

§25Components and Local Connectednes

Definition An equivalence relation ∼ on a set X is a relation having the following three prop-
erties:

� (Reflexivity) x ∼ x for every x ∈ X.

� (Symmetry) If x ∼ y, then y ∼ x.

� (Transitivity) If x ∼ y and y ∼ z, then x ∼ z.

The equivalence class [x] of an element x ∈ X is the set defined by

[x] = {y ∈ X | y ∼ x}.

It is easy to see that distinct equivalence classes are disjoint, i.e [x] ∩ [y] is either ∅ or all of [x].

Definition Given X, define an equivalence relation on X by setting x ∼ y if there is a connected
subset of X containing both x and y. The equivalence class Cx of an element x ∈ X is called a
component (or “connected component”) of X.

Remark By the Theorem 23.3, we have the following.

� Let C and D be connected subsets of the space X. If C ∩D ̸= ∅, then C ∪D is connected.

� For each x ∈ X, the (connected) component Cx is the largest connected subset containing
of x.

Theorem Let X be a topological space and let Cx denote the component of X containing x ∈ X.
Then
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� For each x ∈ X, the component Cx is closed in X.

� For any x, y ∈ X, Cx ∩Cy is either an empty set or all of Cx = Cy. Hence, two components
are either disjoint or identical, that is,

∀x, y ∈ X, either Cx ∩ Cy = ∅, or Cx = Cy.

Proof Let Cx be a component of X containing x. Then Cx is connected, and so C̄x is connected
by a preceding Corollary. Since Cx is an equivalence class of X, we must have Cx = C̄x and Cx

is closed.

If Cx, Cy are components of X such that Cx ∩ Cy ̸= ∅ then, since Cx ∪ Cy is a connected subset
of X containing both Cx and Cy, we must have Cx ∪ Cy = Cx and Cx ∪ Cy = Cy which implies
that Cx = Cy. So, distinct components are separated from one another in the space.

Theorem 25.1 The components of X are connected disjoint subspaces of X whose union is X,
such that each nonempty connected subspace of X intersects only one of them.

Definition We define another equivalence relation on the space X by defining x ∼ y if there is a
path in X from x to y. The equivalence classes are called the path components (or “path-connected
components”) of X.

This is an equivalence relation since

� for each x ∈ X, the path γ defined by

γ(t) = x t ∈ [a, b]

is a path in X joining x to x, i.e. the relation ∼ is reflexive;

� if γ is a path in X joining x to y, then −γ defined by

−γ(t) = γ(a+ b− t) t ∈ [a, b]

is a (reversed) path in X joining y to x, i.e. the relation ∼ is symmetric;

� if α, β are paths in X joining x to y and y to z respectively, then γ defined by

γ(t) =

{
α(2t− a) if a ≤ t ≤ (a+ b)/2,

β(2t− b) if (a+ b)/2 ≤ t ≤ b.

is a path in X joining x to z, i.e. the relation ∼ is transitive.

Theorem 25.2 The path components of X are path-connected disjoint subspaces of X whose
union is X, such that each nonempty path-connected subspace of X intersects only one of them.
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